5970
6000
6015
6057
6147

7795
7999

8000

ELLIOTT 903 ALGOL

Transliator

store map. December 1966

- 5969
~ 5999
- 6014
- 6056
- 6146
- 7794

- 7998

= BL79

Translator and constants

Patch space

Workspace W

Input buffer INBUF (INBUF-1 is referenced)
Stack (see location SP + 1)

CODL growing upwards towards 8191
Namelist growing downwards towards O

Built in names
Spare

Spare

D. Hunter.

ELLIOTT 903 ALGOL

How to add names to the built in namelist December 1966

1. General

1,1 It does not matter where the name is added to the
list which is in alphabetical order except that
CHECKB, CHECKI and CHECKR are at the end; it was
at one time necessary for them to be at the end,
but this is no longer so.

1.2 If the namelist is altered in length the following
changes must be made in the Translator on the
assumption that the last name continues to occupy
locations 7995 ~ 7998 inclusive,

1.2.1 The SIR directive at the front of the namelist
must be reduced appropriately, e.g. by 8 to
¢+ 7787, for one extra procedure name with a
few parameters.

1.2.2 At START + 9 the instruction 2 + 7795 must be
changed to, e.g. 2 + 7787, for one extra procedure
name . If this is not done the name will be
cleared to zero at the start.

1.,2.3 At START + 45 the instruction 4 - 200 must be
changed to, e.g. 4 - 208 for one extra procedure
name ., If this is not done the name will not
have its '"used" bit set to zero at the start.

R Structure of a namelist entry

Only procedure names are considered here, If a procedure
has parameters then extra space is required for their codewords
e.g. the procedures P, CAT and FRED with 0,. 1 and 5 parameters:-

Without parameters One parameter Five ﬁarameters
+ 0 b
i : 8 codewords
p5
+ 0 p U
: 8 g g codewords
pl pl1
£P £CAT ' £FRE
+ 0 + 0 £D
wd 3 wd 3 _ wd 3
wd U wd 4 wd 4

. It can be seen that although P occupies a single 4 word
. entry CAT requires two and FRED requires three entries of
4 words each.

—

etc.
four words.

Parameters, if present,

are described by codewords pl,
p2 etc. where pl describes the first parameter, p2 the second
Up to 4 parameters can be accommodated in a block of
Codewords are as follows:-

Parameter type Codeword

real &106100 If called by value

integer &106500 add the constant

boolean &105100 &2000000

real array &0L6100

integer array &0U6500

boolean array &045100

real procedure &116120 Procedures without

integer procedure &116520 parameters, For

boolean procedure &115120 procedures with para-
meters see below¥*

procedure 100120

switch &040200

label &100200 If called by value see above

string &000040

The block of 4 words holding the name and its details has
the first six characters of the name stored left justified and
space filled in words 1 and 2.

The third word wd 3 contains in its function part a 1
or a 2. If it contains a 1 then the procedure must be on
the library tape and the address part of wd 3 must point to
the name e.g.

1 3 =2

One can arrange a shared group of names, see for example SIN,

C0S and ARCTAN sharing the name QATRIG. If this is done then
the shared name must not start a block of four parameter entries.
If it does then the "reset names" part of initialisation will
treat the block as a name and reset the used bit to zero,
spuriously.

If wd 3 contains a 2 in its function part then the 13 bit
address part is treated as follows:i-

The five most significant digits form the function part
of a pord and the eight least significant digits form the
address part with zeros between the functions and address parts.

I 1 J
- R

E— 0=

The function part is usually /15 or 15 for a PRIM or INOUT
operation., If an INOUT operation is involved and the procedure
name is discovered to be inside a print or read list, eleven

is added to the address part. In theory onc could generate
any pord one likes. If a PRIM operation is involved and the

‘procedure is a type procedure the PRIM UP which is normally

produced is suppressed as 1s required by the interpreter,.

The final word, wd 4, is constructed as follows:-

real procedure &116120

integer procedure without parameters &116520

boolean procedure &115120

procedure &100120

real procedure &036100

integer procedure with parameters &036500 plus the
boolean procedure &035100 number of
procedure &020100 parameters

E.g. a real procedure with ten parameters would be &036112

¥ The codeword for a real procedure with parameters is
&036100; note that the number of parameters is left blank in
the codeword.

3. Assembly of the namelist

Use SIR at 512 to assemble the namelist. Then dump
this by using the non-standard T22/23 to be found on the "USEFUL
TAPES" tape and an appropriate data tape.

b, Adding namelist to translator

After input of the relocatable translator tape clear out
the loader by using "CLEAR IFROM 7168" on the "USEFUL TAPES" tape.
Then dump the store from 8-7999 inclusive using the non-standard
T22/23,

D. Hunter

CONTENTS

Loy INTRODUCTION

2, LIMITATIONS IMPOSED ON IFIP SUBSET ALGOL
3. THE DATA STORE

L, THE CHARACTER SET -

5. PROGRAM STRUCTURE

6. TYPE HANDLING

e NOTAT1ON

8. REFERENCE LISTS

9, NOTES ON TRANSLATOR LISTING

Routines

CENTRAL LOOP

FAIL

TAKCHA

IDENTIFIER

EVALNA

NUMBER

BCR

UNSTAK

EXP

PRAMCH

SEARCH

SECODL

TAKE IDENTIFIER
TAKE

TYPCHK

ACTOP

ARRAY BD

DEC

DECL

ENDSTA

FORCOM

COLLAPSE FORMAL PARAMETERS (FCLAPS)
COLLAPSE NAME LIST (NCLAPS)
real, integer, boolean
begin

do

else

end

for

goto

if

procedure

step, until, while

W W

10
1X
12
20
22

32

Routines: continued

switch
then

.
’

(BECOMS)
(SEMICO)

arithmetic operators
Relational operators
Logical operators

(
]

(
)
i

(LSBRAK)

(RSBRAK)

(COLON)

(COMMA)

(LRBRAK)

(RRBRAK)

string opening quote

Th
75
76
77
78
79
80

81
82
83
84
85
86
87

- GENERAL STRATEGY OF THE TRANSLATOR

1. INTRODUCTION

The task of the Translator is to convert the ALGOL
text into object program operations, which are assembled
into object store by means of a loader/assembler, and
obeyed interpretively at run time under the control of an
Object Interpretexr.

Lack of space necessitates the translator for 903
ALGOL to be one-pass, and object program operations are output
as the source program is read in. Because insufficient store
is available to hold the Translator, the translator Name List
and subsidiary tables, and the object program, some such
decision is dimperative.

The object program is essentially a form of "Reverse
Polish" notation, and the Translator uses a stack to perform

the necessary re-ordering of the ALGOL symbols. The Trans-
lator also uses a "Name List!" which holds details of the
declaration and use of the various identifiers, During

translation a great many checks-.are performed on the legality
of the ALGOL text, but it cannot be claimed that these are
exhaustive, :

The heart of the Translator is a routine called the
"Basic Cycle Routine" (BCR) that extracts the next section
of ALGOL text (a section being a string of characters ending
with a delimiter such as ";" or begin) ; control is then
passed to a routine dealing with the delimiter concerned,
and these routines may call further subroutines.

’

2 LIMITATIONS IMPOSED ON IFIP subset ALGOL

IFIP subset ALGOL restricts "full" ALGOL in several
important ways (one of these being the exclusion of
recursion). 903 ALGOL has further restricted IFIP subset
ALGOL, in particular in the following two areas:

2.1 All identifiers must be declared before they
are allowed to appear in expressions or
statements. This simplifies a one-pass
Translator's task considerably, as all
relevant information about an identifier is
in hand before it is actually used in
processing.

This rule also applies to labels, which
in 903 ALGOL must be declared in a switch
. list at the head of the block in which they
occur, This does not disallow forward
jumps; it merely allows the Translator to
deduce to what level the jump is to be made.
e.gl
begin switch Sl:= FRED, JIM;
go to JIM;
FRED: = e

begin switch S2:= JIM;

£o to JIM;
JIMt—mm
go to FRED;

end -

end

This means that there is no necessity to
"chain'" labels, with all its attendant
complexities,

242 Expressions that should be of type Boolean may
be of type arithmetic. Boolean expressions
must reduce to the Boolean constants true and
false, which in 903 ALGOL is considered

equivalent to the values " # zero " and "zero"
respectively. Arithmetic expressions also
reduce to these values at run time, and the
Translator performs no check on this. As

a result, the following constructs are permiss-
ible:

_i_i"a"'bthen s 0 0
at= a > b

Note: Owing to the stack priorities involved,
" as= a+a>b" is the equivalent of "a:= Z2a>b"
which will assign the wvaluec one or =zero to

"a" depending on-the truth or otherwise of the
Boolean expression.,

.

3. THIE DATA STORE

The Translator requires the following storage areas;

i
i

1l

2
3
4
5

)

|

Name 1ist (NL)

Constants list, which includes label information
from switch lists (CODL)

Stack

Buffer Area (INBUF;

Work space area (W

The Name List (NL)

The name list contains the names and details of
all the identifiers with a current wvalid declara-
tion. This list is divided into blocks separated
by block stoppers. - .

When a block closes,the Name list is then
cleared back to its stopper.

A Name list entry is four words long and contains;
WORDS 1 and 2

(1) NaMB First six characters not separators.
Shorter names are stored left Jjustified.

WORD 3(from most significant)
(ii) FML Set if formal parameter (1 bit)

(1idi) Vv Set if call by value
Also set during procedure body to
throw out recursive call (1 bit)

(iv) U If identifier has been used (1 bit)

(v) Special This procedure is interpreter not
library (1 bit)

(vi) OWNCOD Set if procedure is owncode (1 bit)
(vii) ADDRES Address of identifier, or if formal

parameter the parameter number (13 bits)
WORD 4 (from most significant).

(viii)FD Set 1 on procedure assignment
Set 3 on leaving procedure body, and
can fail trying to assign from outside

(2 bits)

(ix) TYPE Type of identifier (12 bits)

(x) DIM Dimensions.of array or switch or
number of parameters of a procedure
(4 vits)

A Block Stopper contains - 1 in word 1 and BN in

Word 2.

Constants List (CODL)

This list holds the constants used in the source
program ; to prevent every constant taking up
space each time it is used (as it would if the
constants were inserted as they occurred into
the object program) CODL is searched as each
constant occurs to avoid duplicatione.

The list also contains details of all switches
and label declared during the source program.
An example best illustrates its use:

(assume in block 54)
Switch S := LABl1, LAB2, LAB3;
sets up NL and CODL as follows:-

Name List CODL
name address
(in CODL) .
S 1 . +3 (count of labels)
LAB1 2 +0
54
LAB2 L +0
54
LAB3 6 +0
54

When a label is met preceding a colon, it is
looked up in NL; from there the address in CODL
is available, and the current program address
is entered in CODL in place of the "+0", The
block nuwnber must be in CODL to discover at run
time how many entries should be unstacked on
performing a jump to a label.

These addresses have base address added at
load time so are distinguishable to avoid their
being used as constants at translate time.

Name List Entry

N A M
B Space Space
P s 0
M v u|e g
L 8| e ADDRES (13 bits)
i 0
a
i| D ‘
FD TYPE (12 bits) DIM (4 bits)
PARAMETER ENTRY
%
E |V | TYPE (12 bits)
0

3.3

30}-‘-

The Stack

The stack is used as a holding store to enable
expressions to be converted intolleverse Polish,

and also to deal with the nested statement structure.
The next page shows a table of the stack - and
compare - priorities used for delimiters. In
general, operands are compiled, and operators are
stacked. Unstacking is controlled by the stack
priority , and loops until a stack priority is

met that is less than that with which the unstack-
ing procedure is called.,

Stack Entry 1

R | |n|¥| |x
CODE (8 bits) I|B8lo|lP|le| xX]|SPR (I bits)
7 C| B
H 0
L
MM |L|A|lR
RI1P lo|R| & BN (9 bits) DIM (4 bits)
Al |G L
D|N
P
Dp
Cs
Ty ADDRES (13 bits)
Stack Entry 2
CODE (8 bits) I|E|o0 g G § SPR (4 bits)
P ¢
0
e X
M|M |[L|A|R
BIE lo|r| ® BN (9 bits) DIM (L4 bits)
AlT |G L
DN
T
P
Cq TYPE (12 bits)
Ta

Buffer Area

This area is 40 words long and stores source
lines, the filling of this area is automatic.
Once the Translator asks for a character either
the next is supplied or it is found to be an nlcr
and the buffer is refilled up to the next nlcr or
a stopcode,

Stacked
Item

[

AD
(
] ; end ,

begin
proc begin
for

simple

step,
while

MAMPS

if

then
else

then
else

GT, GTF
GTS, GTFS

(ollcs]

ww

]

e
v
A
-

" IND

until,

Stack
Priority

void

void

Cc © O

©C O

N Y HFE DO O

~ Ot W

1l

2

TRANSLATOR STACK

Compare
Priority

void

void
1

2
void
void
void

void

void
vodid

~N oWk W

10
11

12

-8

Remarks

unstacked by

]
unstacked by)

not stacked; used only to

unstack itens

unstackéd by end

unstacked by ;
unstacked by do or ,

unstacked by step,

or while

until

unstacked by do cr ,

replaced by |

unstacked by then

conditional expression

conditional statement

unstacked at
statement end

label
switch

go to
£9 o

array subscript

3.5

The work space area is 15 words long, Although
the coding in referring to the 5th word would
address it as W+l4, to avoid ambiguity it is
referred as Wi and W+4 reserved for W plus the
Value L4,

i THE CHARACTER SET

There are 63 characters in the internal set. Their
octal representation is shown below alongside the 503
flexowriter symbol. The 4100 Westrex character is shown
alongside in brackets when different.

00 10 20 130 40 50 60 70
0 | Space (0 8 $(\) H P p.i
1 nlcr) 1 9 A j i Q Y
2 | e~ (n * 2 : B 3 R 7
3 igéi + 3 ; ¢ K S [
N (& ; N < D L, T £
5 %o - 5 = E M U
6 & . 6 > Iy N v
7 (/)| / 7 p G 0 W 7 (<)

e.g. The double character ? in the 5073 code corresponds

to in the 4100 code and is represented internally as 3.

Rl

Note nlcr is represented in the westrex code by carriage
return, line feed and run out, This is handled on input
to make line feed the operative symbol.

Stop code is treated in most respects as an nlcr. It
is recognised in GETCHA (FILBUF) and terminates the buffer
filling. When the line has been processed the increment
line count is omitted and the program pauses.

Becomes (:=) is left stored as two characters but the
routine GETCHA has a look ahead facility to cope with this
as it does with parameter comments in procedures.

The colon equals sign must not contain a separator.

=10=

5. PROGRAM STRUCTURE

A compound statement consists of a set of statements
‘preceded by begin and followed by end. A block, however,
has one or more declarations between begin and the set of
statements which are again followed by the delimiter end.
On meeting the first declaration after a begin, therefore,
a block is dimplied.

Whether or not an object bloclk is set up depends
entirely on the mode of storage used for the variables
local to that block, The "wipe-off" mechanism at the end
of an object block is best achieved by clearing back the
stack pointer, without worrying whether to "block off" other
areas of storage. There are two extremes to this problem:

i) that all variables are kept on the stack,
and hence there must be an object block
generated for every source block; or

ii) that there is so much room in store that
all wvariables are given an absolute
address in store and no object block need
ever be generated. (Remember that we do
not have to worry about recursion).

This translator steers a middle course; all scalars
are given addresses in store, and arrays, formal parameters
etc., are kept on the stack. As a result, an object block
is only set up for the latter cases., This approach should
be contrasted with Randell & Russell's method, which keeps
all variables on the stack,

For object program operations see the pord manual.

= Edms

6. TYPE HANDLING

6.1 General

The conversion of variables and expressions
from real to integer or from integer to real is
handled by the translator. Basically, the rules
for determining the type of an expression are as
follows: -

(i) The type of an arithmetic operation is
integer if both of the operands are of
type integer, otherwise real.

* L= = (a + b)xD

a + b gives type integer; since

D is real, (a + b) is converted to
real before the multiplication is
performed,

(ii) In an assignment statement, the expression
on the right-hand side is converted to
the type of left part list.

e.gs ¥ =1 1= q + T

q + T gives type real since T is
real, and is converted to integer
for the assignment to i. r being
integer required that i, and any
more elements of a multiple assign-
ment should be of the same type,

There are three conversion operations in the
object code:-

(i) R to I convert 2nd operand to integer

(ii) I to R1 # " operand to real
(iii)I to R2 " lst operand to real

e.g, ai= b + (D - e)

The object code in reverse polish is:-

a
b

D

e

I to R1 convert e to real
- R

I to R2 convert b to real
+ R

R to I convert b + (D-e)
t= to integer

The translation of conditional expressions
when type conversion is involved, is
illustrated in the following example:-

w18

b + (iﬁ P < q then d else I');

A =
a - % denote a variable of type integer
A -3 " T " " t yreal

i 1

Since the else part produces: a real result,
the then part must also produce a real result.
The object code in reverse polish is:-

A
b
p
q
<
IrJ. If False Jump to else part
* d
UJ = Unconditional Jump round else
part
R
Y J »meemmm—t oy
L t5 R]et— Convert d to real
I to R Convert b to real
+R

% The conversion (I to RLl) cannot be placed here

since in a single scan the translator is unable to
know that the else part will give a real result.

6.2 Rules for Type Determination

£1) Assignment Right hand part converted to
left-hand part.

a 4= b + D; (b + D) is converted to
integer

(i1) Arithmetic or relational operation If either
operand is real,

a t= (b + D) x e; b and e are converted
to real.
a 1= if B < d then p + q else y - Rj

d is converted to real since B is real (p + q) and
y are converted to real since R is real.

(iii) Subscript expression The subscript expression
must give result integer.

a t= A [b+ D] ; b is converted to real
since D is real.

(b + D) is converted to integer since it is a
subscript.

(iv) For Statements The list elements must be
converted to the same type as the controlled variable.

. 14~

a,b step d until e, { while

do LN I B

for V
P <q

a,b,d,e and f are converted to real since V is real.

In a procedure call, the

(V) Actual Parameters
actual parameters must be converted to the type

(real or integer) of the corresponding formal para-

meters,

procedure P (a,B); value a,B; integer a; real B;

P (A,b); A is converted to integer and b to real to
match the types of the formal parameters a and B.

(vi) Division Except when specifically required
through use of a special Algol word div, the result
of a division is real irrespective of the types of
the operands, though there are 2 division operations
in the object code. This is best illustrated in the
following table:-

ALGOL Object code

expression Conversion operation Result
a/b - / integer real
A/B - / real real
a/B I to R2 / real real
A/b I to R1 / real real

a div b (Badl iIf

either real) div integer

(vii) Exponentiation This is similar to division,
but there are third and fourth object codes for
exponentiation,

(A) Integer exponentiation giving result
integer. This operation may only occur
when the mantissa is integer and the
exponent is a positive integer constant.

(B) A special primitive for 31‘1 stops the
expression being failed out when the .
integer is negative. '

The operations are illustrated below:-

ALGOL Object code

expression Conversion operation Result
a@ b - 1\ integer (1) real
A 1\ B - f real real
alB I to R2 freal (2) real
a ¢integer

constant - Tinteger (3) integer

A Tb T(special(h) real

6.3 Type determination in the Translator

A global variable TYPBOX contains the current type
(real or integer) of an ALGOL arithmetic expressions This
is set by every arithmetic identifier or constant when
compiling the object code for the operand (in TAKE) and is
staclted with the binary operator which follows. When the
expression is unstacked this type is unstacked into LOXTYP, TYPBOX
is set to the resulting type of the expression and any
conversions necessary are compiled.

~-16-

s

Example
A 1= d + Exf

Translator ' Object
Stack TYPBOX Code o
real. A A
:=(R) =
integer d d
+(4) +
real B0 I
*(R) *
integer f £
; |unstacks the
statement
I to R1 convert £ to real
real *R
I to R2 convert d to reaI
real +R
real $=

On unstacking the decision of whether to compile a
conversion or not, is made by comparing TYPBOX with the
type stacked with the operator. .

TRANSLATOR Conversion Rules

(1) Each identifier or constant sets TYPBOX to
its type (real or integer) in TAKE.

(ii) The type from TYPBOX is stacked with + - ¥ /
< <=>>#, 1=, [, else, for comma, for:=, step,
until, while. With the exception of [, the type
stacked is that of the preceding variable or express-
ion. In the case of [it is the type of the
preceding array identifier. Boolean is stacked

as integer.

(iii) In the subroutine UNSTAK, the type stacked with
the operator (e.g. + i) is compared with the current
type in TYPBOX. A conversion is compiled if necess-
ary and the relevant operator compiled (e.g. + R) .
The current expression type is then placed in TYPBOX.

(iv) Conditional Expressions The type of the then
part is stacked with glse. On unstacking the else
part, the type stacked with eclse is compared with the
type of the else part (in TYPBOX) and a conversion
compiled where necessary. .

- o

(v) The operatorsfr and/ always leave TYPBOX set
to real on unstacking except for div and IT I as
noted in 6.2 (vi) and (vii).

(vi) The assignment operatoxr
to the type stacked with it.

{= requires a conversion

(vii) Array element On unstacking a subscript
expression requires the type to be integer and a

conversion is compiled if the expression is real,

The type of the array, stacked with [, is then placed

in TYPBOX.

(viii)Procedure call If the call is to a type
procedure (i.e. it yields a value) the type of the
procedure is set in TYPBOX after compiling the call
at) or TAKID.

(ix) The expression bracket '(', if and then do not
require a type to be stacked with them nor do they
change TYPBOX on unstacking.

(x) FF'or statements The type of the controlled
variable is stacked with the start of each list element.
On unstacking the list element expression, a conversion
to the stacked type is compiled if necessary, and the
type again stacked with the start of the next list.
element.

(xi) Actual Parameters These are dealt with in the
subroutine PRAMCH which determines whether to compile
a conversion or not by comparing type of the actual
paranmeter with the type of the formal parameter (this
information is found in the Namelist). TYPBOX holds
the actual parameter type, if this is an expression.

COMPARISON between operator type and TYPBOX

Operand 1 Operand 2 Object code conversion
See Note See Note expression else
integer integer op I -
real real op R -
real integer I to R1, I to R1
op R
integer real I to R2, UJ,I to
op R R1
Operand 1 Operand 2 Object code conversion
See Note See Note = / [
integer integer t= op I -
real real os= op R R to I
real .integer I to R1, I to R1 -
HE op R
i I
integer real R to I, (Special R)
3= I to R2 R to I
op R

~18-

Note op R, op I denote an operator of type real or
integer, Operand 1 is the variable or expression
preceding the stacked operator, or the left part of

assignment, or the then part and conditional expression,
or the array ddentifier,

Operand 2 is the variable or expression following
the stacked operand, or the RH side of an assignment,
or the else part in a conditional expression or the
array subscript.

<19~

7 NOTATION

The action of taking the item at the top of the
stack and distributing the various constituent parts
of the item into fixed locations is denoted by the
procedure RESTO, The parameters to this procedure
correspond to some or all of the constituent parts
of the item at the top of the stack. Those parts
that are to be stored in fixed locations are indicated
by a parameter, enclosed in square brackets, giving the
name of the location. The final action of RESTO is
to decrease SP (the stack pointer) by one, and setting
TS to be the current top of staclk,

For example, if the item at the top of the stack
is
begin TR , 53, 1026, O

then RESTO [... BN , Q]

deletes this item, having set BN to be
53 and Q to be 1026.

The procedure PRESTO is a variant of RESTO which
does not decrease SP and TS then remains the same.

The subroutine STACK has, as parameters given on
separate lines and enclosed in square brackets, any
items which are to be added to the stack, The stack
priorities are indicated by the final underlined integer.

For example,
STACK DECSTAT, NLP, BN, PP

proc begin 0.

will stack the item "DLECSTAT, NLP, BN, PP"
and then the item "proc begin , 0",

The subroutine COMPIL uses a similar notation to
indicate any operations (and their parameters) to be
added to the object program.

20—

A subscripted item has the subscript value enclosed

in square brackets. If an id

round brackets this may be tak
e =1
(NLP) := Zy

is putting a block stopper in

entifier is enclosed in
en as 'contents of'. e.g.

the name list. -1 is put

where the name list pointer points and the Block Number
goes in the next word, Replacing the Global Block Number;

BN (NLP+1) rather than BN :

To make stacking easier,
the values corresponding to th
example is stacked as the 9th
and consequently the variable
+256 in the coding. The flow
as 0 or 1, It is thought saf
variables to refer to their ac

Values of masks are not
GRPCOD masked TABLE [LASTCH
is the 12 most significant bit
SIR conventions the bits mean:

X X X

mter

Separator
Digit

XXX

Arithmetic
operator

Basic symbol
with assoc-
ated delim-
iter routine

Logical
operator

Also, similar to SIR, th
OPTION which varies the action

-2 -

= NLP[1].

the Global variables take
e stacked position. E for
significant bit of word one,
is carried about as 0 or
chart however, refers to E
er for other multistate/
0

tual values (DECSTA

shown in the flowcharts:
+1] implies that the mask
s, and in agreement with

o)

X
sed
ALGOL

ouble
char.

.or 10
in

X X X

Special
action

Relational
operator

Parity bit
for Westrex

ere exists a variable called
of the translator.

The bits mean:

Halt on error
Warning mode

Output check functions

® N

Inhibit library scan

The method of testing is shown as e.g.

OPTION

5> bit in a decision box,

Finally, in dealing with the flowcharts, certain
abbreviations have been used, but it is hoped that in
the main they are self evident, some examples are given
below,.

nler New line carriage return
inc Increment (Var := Var + 1)
Acc Accumulator
Aux Auxiliary register
Str String
Real/int/Bool)

R/I /B ; real, integer or boolean

Scalar)

Note The symnbols /\ and \/ are also used in logical tests

T (m=0)p (4=1)

8. Reference Lists

It has been found convenient to have certain lists
available for immediate reference. These are:

(i) Types (bit patterns corresponding to types
of variables);

(ii) Delimiter 8 bit values (in practice stored
at most significant end);

(1ii) Correspondence of routines to error numbers;

(iv) Glossary of Global variables used.

-2

(1)

o O o ST = R Y
— o o o ¢
o Cc © o

H B 2 M © O O C
© o o o o o © O

=
(e]

=

o © O

N

o O O ©

]:!EGS

o O O @
e

©c O ©O

O K

O K B R

(@]
(@]

ooT®

‘cw

W e wEY

O R = O K

o

C DEF G HJ

i 00O 100 real

1 010 1 00 dinteger

0 100 100 boolean

1 000 100 real array

010 00 integer array

0 1 0 00 boolean array

1 000 1 00 real procedure

3 010 1 00 integer -
procedure

0 100 100 boolean -
qrocedure

0 0 0O 1 00 procedure

K 000 101 real procedure

Zero
1 010 101 integer -
procedure zero
0 100 1 01 boolean -
procedure .zero

0 000 I 01 procedure 2zero

0 001 00 switch

0 001 0 0 Q label

0 00O 010 string

must not be followed by bracket
must be followed by [bracket
must be followed by (bracket

type procedure
Algebric (Arith‘v boolean)
Arithmetic

Boolean result
Integer result
Switch or label

not a switch, label or string

String
Some procedure zero (parameterless)

"

106100
106500
105100

046100
046500
045100

036100

116120
116520

115120
100120

040200
100200
000040

(11) Delimiter 8 bit Codes (internal entities)

Octal Decimal
0 -~ 63 As internal code for letters etc.
100 64 Spare
65 g9 to
66 if
67 for
104 68 end
69 priat
70 read
71 begin
110 e code
73 algol
74 comment
75 boolean
114 76 integer
77 real
78 array
79 " switch
120 80 procedure
81 string
82 label
83 value
124 84 © true
85 false
86 <
87 2
130 . 88 #
89 =
90 implies
91 or
134 92 and
93 not
9l then
95 else
140 96 do
29 1=
98 step
99 until
144 100 while
101 div
102-127 spare
200 128 spare
: 129 then E
130 then S
131 begin TR
204 132 begin ALL
133 for begin
134 simple
135 else B
210 136 else S
137 GTF
138 GT
139
214 140 £§b
141 proc begin
142 GTS
14 GTFS
14l STA
145 NEG
146 MAMPS

(iii) Table of error numbers

OVEION Bt FwNR

our

SETPRO
SWITCH
PRAMCH

ACTOP
NUMBER
NUMBER
COLON
BCR

BCR
BCR
BCR

EVALNA

FCLAPS
SEARCH
SEARCH
ouT

ENDSTA

FOR
TAKID
RSBRAK
LSBRAK
LRBRAK

SWITCH
DECL
BECOMS
COLON
TAKE

TAKE
ENDSTA
LSBRAK
UNSTAK
EXP

DEC

SEARCH
RSBRAK
END

TAKID
GOTO
FORCOM
FOR
TAKE

COLON

ouT gRead)
Print)

ACTOP RRBRAK QUOTE

PROCED
BECOMS

PROCED

STEP

AOP
TAKID
BCR

QUOTE

LRBRAK

25—

TAKID
REAL
SEARCH COLON
ACTOP
ARRBND TITLE

PRAMCH RSBRAK
BECOMS

SEMICO

DEC

EXP

TAKCHA

AQP

RLT LOGOP
LOGOP

BEGIN

SEARCH LRBRAK
LRBRAK

DEC

UNSTAK

PROCED

ARRBND
Ir

iIF
THEN
ELSE

ARRAY

LSBRAK
RSBRAK
RSBRAK

REAL
COMMA
STEP
NCLAPS
STEP

RRBRAK

LRBRAK RRBRAK
STACK

RRBRAK

CHECK PROCED

PROCED
SEARCH
PROCLED
PROCED

GETCHA
PROCED

-6

RRBRAK

STATRM
PRAMCH
RSBRAK

FORCOM
THEN
GETCHA
SEARCH
1IF

PROCED
PROCED
ARRBND
UNSTAK
QUOTE

COLON

FOMPIL
PRAMCH
PROCED
PROCED

RRBRAK
BECOMS

PROCED

FOMCOM

=B

¥0d JUIWAN
gletelelces LIVLS

g1ONNd
TIdWOA TIdNOD

SdVION
dy¥dDNNd
LUVLS
VHOLED JIYV.IS

aIooud ¥od 23d
HOYVAS AVISNA

VL
EaLs SdVIDN adooud
(2dd ¥0d 0d

103a [Xvyuyv

[(3T sSeosTd 0a
VISONE UT PpaIeald
HOIIMS

dFgIs ‘] uT T ©3 I1dS

AVLSNN

Irav
NODNWOA

PN AN TS

TT 39S

Amwﬁm%\mﬂhpv ueatToog fz ‘Tefejur (T °3UBESUOD TeaX £0
100 UT 929aF 3xou oj Jajutod IJAT3IeTaY

sndano Jo sd4A3 Jo JopeOT 9Y3 WIOJFUT 03 JUHNNd 4£q Pasn
asdeTTo2 3STT LweN FUTINP 39S JISNIBKW

andino AJeurq SUTNO9YO J0J SJI930BIBYD JO uUMS AJeuTrg
1UBISUOD OIDZ

peasneyxa Jo93ing 3nduTr uULYM MOYS 03 IINIEeR

pesn awey X20Tq 3SOUSTH #+Nd
aweN M20Tq punog j3se] Z+Nd

owe)N MOOTg JUaIInN)

UOT3BIRIOSD Aeade UO 3uUNod AeIxy

(T = HLTUV JT Itey) sIojexado

*JoT J0 “Tax Jo osm Jo AJTPITRBA SHO2UD
pasn MoUu 3ON

ssoJppe pa¥oejisun JI0J 88eaols Agexodwa],

MHV A H+Idavy
I) pesn C+TAAV
(1) TR 2+Iaav
MHW WIa T*Iaavy
I) SEYAAV Fo Adod Ted0T

asQy

SETEVIYVA TVdOTD

SNOD
d7T002

qAaod

IND

HWOSMHD

ovVI14dNd

Ndg

nooy¥yv

HLTOV

SHYAaAV

Iaav

9TqeTIe,)

(AT)

—28 -

42A<>ﬂ M
VHOLID (

[HoOuvas

VHOLED VHOMVI
IIINN TITEM JILS ¥0od
TIVA
0L0D ¥oJd 0d

] ¢
I FSTIE VISANT
3e paIeEaIl)d 0L0H Ut
T9027/Uo3TMS ©03 338
) 0¥d4dlES
¥qod] 0109 AT
FLON® INTHYd dXI
32 0 02 23°S
) [og ws1m

0ddyES d0L3V VISONY

3e T 03 39S

MVISND
aod
dOV @IOoNd ¥oH

[BOLIMS

aIooud IVEL AVV¥Y
) NOT0O SW00Ed

JI 0L0D NIDZEL
amoo¥d ¥od OEd
g0d ¥IIWAN

TT 3985

JI230BIBYD IXIN Z+IIDILSVI

I920eIBYD 1UISSII T+HOLSYI

I9IJNgq WOoJIJ PEaJI I9312BISYUD 3Sse]

JdIN JO @nTejp PUNOJ SUTBIUO)H

(L *o3g) x930eIeyd

JI0 ‘IS3TWTITOP 3U2IINO JI0J 9POO UOTFRWIOIUT
ﬁmmmﬁMHo HOMV SHOIYD XelUuAsS JIO0JF IoNIEH
Joqunu JO0JJId S3BTNUMIdE 03 JIaj3sTIay
Jo¥JIeW asneld Jod

Amvomhp paozoadxe spxooay
4sTT 3utad UuT 39¥0oeIq UOTSSoIdXd JI0F 398

suoTtssoxdxe JI03F O ‘jusmaje3s I0F T 198

SUOTSULWIP paxoeisun JI0J 98exoqs Axeaodwsa]g,

dOOdYD Pe3IBTD0SS® SYJF SUTBIUOIT+WITHC
IO TWITOP FUSIIINY

UOTFBIBTOSP JuUsIaInd Jo adAjg
*squswegels Juranp g

suoTieIeTo9p SuTtanp T ‘Urseq 3e O
1X83 JOOIYV UT JUBLSTOD JUSIINY

as

HOILSVT
I

qoddud
)
NnooIvd
1

dALdXY
SHEY4IXHE

cH

NI

WITEA

dALDUd

VISOHd
VISNOD

STqEeTIEp

-29-~

UT 3eS

aaooud

TIANO0D
qaoodd

0Ed HAVLI
dXdT ¥0d
dAG00 dEO0Ud
JYVIS
SdVTION

SdvI9d qUIooud
0BT HOUVHS
SAVION IYVIS
L8VIS

INTAT

VISONE MWNIEIT
MvydsT avdyd
VISANE AvaEAT
HVJasT LNTY¥d
TIVA

qod aNdg
JEdWAN INJIdTI
dELS MVISNA

JNETT
SWODHEd

d0€g

TIJNOD

31S8TT oweN UT Axjus punoj IoJ a8exols Aaeaodwag

Jojutod paod Jo anTeA JUlIANY
Sutpesy sanpssoad B Furssedoxd usym 395

pesn MOU MON

*sSTTE2
auTjanoIqNs QdwWos Jo ApPTiea FUINOS[O I0F Id3dmered
seanpasoxd aspooumo JI0J 198
UoT3EeTSURBI], JO JI3jzswexed
MooTd 3ST 933 JIN JO @uTleA T+JIN
(G66L) d&IN 3o anTep TeT3ITUL T+JIN

I91uTod 3STT 2WepN’

Jojutod ®aI® ®BIBP TBUOTION
JISTJTRIUSPT (3§ JI0) jFUSIIN) SUTEBIUOD

1U2Woe1BLS Peay UT 39S

quswsgels jqurtad ut 39§

2INTTRF ® SPI00ay

I3 TWTTS/P FUB]}SUODd JT ¢

f{I93 TWTTOP JIBTITIUIPT JT T fATUO JISITWITAP JT O
X0g9dXAl UT ¥Moejsun JI0J pPaAIdsax soedg

pasn mou 30N

pessasoxd ATzusxano Furaq SUTT JFO JIaquny
jusmuFTsse uw Jo adAjg puey 3397

. pesn Mou 30N

TQISVI JFO Qoody¥d T+IALSVI
I3 TWITOP 3SeT]

poTtdwmod waj3T 3seT

9sy

INIOHd

dd
Hd4

WVavd

d
TODNMO
NOILdJO

dIN
dVAN
WVN

aQVIIN

LINTHIN
TIVIR

n
dALMNOT
DOT
INTTI
HdALET
THAHAT

TALSVI

dDLSVI

STqetxes

-30 -

aNgayv

ONd SAVION

SdVIDd
TIdNOA

MHOJAL HMV.I dIMVI
HVHgsST MVISNN HOUVHAS

JMOVIS 01SEY
SKOOFZ 010D

VISANE
MAVISNN

AOVIS OLSHY

ZLoNY
AvadyI

TT 39S

gletelelces)

AVIEIY
Id00dd

HVEEHT

IVHIST
aaoodd

SUOT1eIBTOSP Avaxe

uUr ¢ pue : Jo AJTIPITEA JUTHOSYDO I0OJ pesn

JI93JI'l 9FEesSsow FuTugepm
PaITNbad ST UOT3o2UNI AJIBIQTIT B JI9YLIaUM MOUS 03 JISNIe)

Peosn MOoOUu JO0N

uoT399s TOSTV guaxano Jo adAg
3orels Jo dogJ,

anTeA ATTeoTlo®BaULS ST

JUSUWATS ABIIER UEB 2JI9YM 230UIP 03 STUBTIRA
: *Ag3TaxoTtad oe3g
JI93uTtod 3oe3g

pesn MoU 30N
pesm MOU 30N

B9JIE® 3JUelSU0D YodJaeas 03 pas|

Tozsweded JUSIANMD JO Iaqumy

ITe2 Tengoe UT sweu sanpssoxd o3 Joj3urtod

saanpsosoaxd JI0J 39S

asn

XX

M
TILNVM
ddAL

X0ddAL
SIL

AS
dds
dS

TEd

nooWyd

0dO0ud

o0dd

STqetaen

31—

9.

Notes on Translator listing

(1)

(idd)

LLocation of entities

An entity can be located in the listing by
bearing in mind the Group to which it belongs.
There are four groups -

Vol 1 has Group 1 All global variables
Code conversion table
Basic routines like PRINT
and GLETCHA

Vol 2 has Group 2 Routines such as COMPIL
which use Group 1 routines

Vol 2 has Group 3 :Routines such as DECL which
use Group 2 routines,

Vol 3 has Group 4 A routine for cach delimiter
e.g. array SEMICO etc.

Within each group the order is alphabetical as
far as possible. At the end of the whole
translator is the Central Loop in order that
jumps to delimiter routines can be to located
places rather than forward junps. This ordering
helps to shorten the relocatable binary tape.

Assembly

1. Assemble using 6th April 1966 SIR to a
relocatable binary tape.

2, Input this tape which produces a global
label list, and also records the store
used.,

3. Clear locations 6000-8178 so as to remove
the loader.,

4, Input the initial names list in binary which
occupies from 7800 approximately to 7998

5. Dump the store using "Larry T22",
6. Attach a clear stores (or punch it in) at -
the front.

Initial Names list

The initial names list must be assembled using
a version of SIR in 2048. After assembly clear
locations 8-7168 to remove SIR and then dump
the store using Larry T22,.

CENTRAL LCOP

The basic cycle routine (BCR) fetches the next
ALGOL "section", which is in one of the following three
formats, and sets the variable M to be

O : delimiter by itself
1 : ddentifier followed by delimiter
2 3 constant followed by delimiter

A delimiter being a basic symbol like ; ox +, or
an ALGOL word like begin.

Depending upon the delimiter discovered, a transfer
of control is made to the relevant routine, which will
end with a jump back to OUT. In some cases BCR is called
during the routines (e.g. in procedure it is called to
check whether the procedure body is in ALGOL or in own
code) and in these cases exit is made back to OUT2, and
processing continues on that delimiter.

BCR is called with one parameter which can be either
0, 1, 2, 3 or 4L, The first three require the section
to comply with this forecast for M. BCR (3) is the general
call which will accept any section, and BCR (4) is the
call during subsequent discarding of the rest of an erron-
eous statement or declaration, or of a comment,

ERRORS
FAIL 33) or] precedes constant or identifier

FAIL 10 M doesn't agree with the parameter in
BCR (0, 1 or 2)

FAIL 11 Alphanumeric character, ','! or ' !
misplaced,

FAIL 12 Constant or identifier true false

FAIL 13 comment misplaced

FAIL 15 VUnrecognised underlined word,

-

FPATL

This routine is accessed whenever a failure occurs
which doesn't make continuation impossible, N.B., If
the stack iFeinter moves beyond the beginning of the
stack this is considered impossible and the program
jumps straight to FNDPRO. In gencral, the action taken
is to throw away the remainder of the statement.

First the error message is printed which gives the
error number, line number, line stored in INBUF and a
pointer which shows which is the offending character
(except in the case of an illegal character when the
whole buffer is inspected and illegal characters replaced
by 7 or <— (westrex). The: error count is incremented
and the program terminates if it reaches 20. The option
is dnspected and set to checking mode, followed by a pause
in the 'halt on error' condition. It is here that a
return is then made to NCLAPS if an unallocated label
has been found, otherwise the stack is cleared back to
a begin, and the global variables are reset.

The current delimiter is then inspccted. If not a ;,
end or begmin, the next ALGCL scction is brought in to
replace it, and this is repeated until one of these
delimiters occurs, FAJL then exits to either the routine
BEGIN, or internally to LND or SEMICO unless the text
is found to be inside a procedure Heading when the rest
of the heading is discarded before processing.

..

TAKCHA (Take Character)

This subroutine, called from BCR, places the next
significant character in the source line into the global
variable space. The current character is moved to
LASTCH, the character Jjust received is put to LASTCH+2
for the 'look ahead' facility, while the characler currently
there becomes the present character to be processed, and
moves to LASTCH+1l, "space" or "tab" are ignored; "newline!
replenishes the source line in the buffer by the use of the
subroutine FILBUF,

The only characters requiring further study are @
and). The former may be followed by = to produce :=,
and the tests on this branch are used to ascertain whether
this is the case.

The latter, closing round bracket, may be the start
of a comment acting as an actual parameter delimiter.
.G:
PROCCALL (a) this is a comment :.(b);
is the equivalent of PROCCALL (a,b);

PROC is tested to see whether we are dealing with
a procedure call, and if so, the next character in the
line is tested to sece if it is a letter. This
differentiates between

]

PROCCALL (a) this is
and PROCCALL (a

If this is a comment, the buffer is searched for the
terminating colon ; when found, the next character is
checked to be (, and THISCH is set to comma (the other
valid form of parameter delimiter).

ERRORS ¢

FAIL 56 ; character other than separator between
the : and (of a parameter comment.

IDENTLFIER

This routine merely builds up the identifier character
by character in the state variable NAM, ignoring any sign-
ificant character after the sixth (an IFIP ALGOL subset
restriction).

It is called from BCR when the next character is found
to be alphabetic, and reads characters storing them in the
most significant end of the double length pair NAM and
NAM +1. It sets M to 1 and exits when a delimiter is
found.

EVALNA

This subroutine, called from BCR, converts a
delimiter such as -~ begin~ into an integer, The
routine clears a location then adds successive characters
to it multiplying each intermediate result by 67. When
the closing character is met, the result is looked up in
a table and replaced by the required delimiter .

LERROR

FAIL 15; Unrecognised result after this evaluation.

-

NUMBER

. This subroutine (written by C.W, Nott of N,P.L)
ends by placing the binary equivalent of the decimal
digits in the state wvariable CONSTA and CONSTA+1,.

This routine calls its own local routines; STAND
which standardises the floating point number in W3 and
Wh (binary exponent in ¥W5); POWER which multiplies the
number by the accumulator to the power of 10. Bearing
in mind also the uses of the variable space (below) the
routine should be clear from the flowchart.

LASTCH last character read.

Sign set to one if the exponent part
is negative,

W3, h&5 used for the partially computed
number,

Exp set to one by the character '10'

Point set to one by the character ','

Dec ; used to count the number of

decimal places and for any
exponent,

Max set to one if the integer or
exponent part of the number
exceeds capacity.

PWS . | parameter for FOWER

PMKR marker to remember whether this
power was negative or not,

ERRORS
FATIL 7; illegal number

FATIL 8; integer number too big,

BASIC CYCLE ROUTINE (BCR)

This subroutine is used to fetch the next section
of ALGOL text, and to allow for comments after the
delimiters ; and begin. It is controlled by its
parameter P as follows:

(1) P = 0,1, or 2 : a certain type of ALGOL
section is expected, and this is checked by
comparing the final value of the state
variable M ;

(ii) P = 3 : no check is made on the type of
the ALGOL sectionj and

(1ii) P = 4 3 the subroutine is merely being
used to find the next delimiter, such as
in an end comment, or during scanning
after an error (see FAIL), The
constituents of identifiers and numbers
need not therefore be processed.

BCR itself uses several subroutines, First it
calls TAKCHA, which brings up the next character which
is tested to distinguish between delimiters, numbers and
identifiers.

A ~ (or " in 903 ALGOL) announces an ALGOL word
(see Notes on Internal Character Set), such as ~b e g i n ~ .
This is operated upon by the subroutine EVALNA to convert
the string of characters into an integer, and the delimiter
list is then searched. If the delimiter is comment, further
characters are taken until ; is met, which ends the comment.,
If the delimiter is true or false CONS, M, and CONSTA are
set. Otherwise this joins the basic symbol path,

If this character is a basic sysmbol, the symbol list
is searched, P is checked where necessary and the routine
finishes., .

If this character is a digit, decimal point or 10,
NUMBER is called to place this number in the variable CONSTA.,

Simiiarly in the case of a letter, IDENT is called to
place this identifier in the variable NAM,

ERRORS .

FAIL 13; comméﬁtrdﬁeslﬁot follow; or begin.

FAIL 11; letter, digit, '.' or '10' misused.

FAIL 10; ddentifier or constant not as expected.

FAIL 12; true or false preceded by constant or
identifier.

FAIL 33;] or) precedes constant or identifier.

FAIL 15; unrecognised ALGOL word (LVALNA),

-39,

UNSTAK

This subroutine is used to unstack items from the top
of the stack until an item is reached whose stack priority
SPR, is less than the value given by the parameter, or
until the stack is empty. In general, items are unstacked
directly into the object program (in some cases after
extensive typechecking) with the following exceptions:

(1)

(id)

(iid)

ERRORS
FATL 3k;

FAIL 64;

If the stack priority SPR of the current
item is 12, the variable P (set up by

TAKE or EXP) determines whether to generate
INDA or INDR.

If the SPR of the currcnt item is 8 (di.e.

‘it is a relational operator) the parameter

should not be 8 as this would mean an

"incorrect use of relational operators, e.g:

x Ly + 2z <4

If the top of the stack is else E, TYPBOX
and LOKTYP must be checked to produce the
special case;

UJ PP+2

Update ADDRES

I—-R1
when LOKTYP is zero and the else part
turns out to be real. (This is a

consequence of the single pass technique).

Another special case is where the delimiter
from the stack is :=, the necessary conversion
may be R-»I if the left hand side is integer,

Where the delimiter from the stack is an
arithmetic or relational operator, further
typechecking is necessary, and special
primitives may be compiled, as in the cases of
integer | 2 or Real f integer.

incorrect use of relational operator.

illegal use of subscript variable.,

FAIL 104; Div has real operand.

~Lo-

EXP

This subroutine is used to check the validity of use
of the current delimiter and to change the state variable
E to expression level if necessary.

The parameter P has the following meaning:

il

(] P =1 Delimiter can only be used at

expression level,

(id) P e 2 Delimiter can only be used at
statement level,
(4dd) P = 3 Delimiter can be used at either
level.,

UNSTAK is called with a parameter of 12 to unstack
IND (the parameter P deciding whether INDA or INDR is to
be generated), and the top of the stack tested to see
whether := necessitates a changing of E to zero. Logdical,
arithmetic and relational operators in statements other than
procedure calls are failed here,

ERRORS :

FAIL 35; illegal statement - delimiter misused.

FAIL 55; go to, ¢ or for used in expression.

~hs

PRAMCH

This subroutine is called from ACTOP to check the actual
parameter with the correcponding formal parameter and to
compile the relevant object program operation which will
access this actual parameter for the procedure that is
being called,

TABLE 1 gives a list of formal parameter types
with the possible actual paramete types. In general,
the rules are :-

(i) If the F.p. is called by name, the a.,p. must
have the same type and kind.

(14) If the f.p. is a scalar called by wvalue, the
actual parameter may be a scalar, expression,
array subscript, constant or type procedure
Call ®

"(iii) If the f.p. is a label called by value, the
actual parameter may be a label or switch
subscript.

(iv) Procedures, strings and switches and parameters
of formal procedures may be called by name only.

The choice is further complicated, in the case of
scalars, by the fact that an actual parameter may itself
be a formal parameter, Table 2 gives the possibilities
for this case,

The subroutine uses the following variables:-

PROCPO : namelist address of procedure using
. this actual parameter,
PRMCOU ; number of actual parameter in the
procedure call.
I: namelist address of dctual parameter,

TYPBOX expression type (real or integer)

Vo 0 if called by name, 1 if called by
value,

The first job of PRAMCH is to recognise whether the
parameter is of a formal procedure or not, then W locations
7 to 10 are set up the formal entry, V formal, type of
formal and type difference (actual type - formal type).
Next in the cases PRAMCH (0) and PRAMCH (3) when parameter
checking words are compiled W14 is set with the check word,
then W1l is set with a bit pattern according to W7, the
formal entry, which later helps with the processing of

* <li@ s

identifiers, non-formal function designators and array
subscripts. ,

Little remains now except the somewhat tedious syn-

tatical checking and to compile the parameter call., After
this is compiled the parameter checking word if applicable
and the routine exits to or comma,

ERRORS

FAIL 5; fp is not label when ap is a switch
subscript,.
fp is not called by wvalue when ap is
a switch subscript.
fp is not scalar when ap is procedure
call or array subscript.
fp is not scalar when ap is expression.,
fp is not called by wvalue when ap is
expression,
ap is integer constant when fp is
non integer by name,
ap 1s Boolean constant when fp is
non Boolean,
ap is real constant when fp is non real
by name.
ap is wrong type array when fp is array
by value,
illegal ap called by wvalue,
ap is not label when fp is label by
value,
ap i1s not Boolean when fp is Boolean
scalar,
wrong type of formal parameter
scalar used as ap when fp is called
by value, :
wrong type of formal parameter used
as ap when fp is not scalar.

FATIL 51; +too many actual parameters,
FAIL 94; unrecognised formal type.

FAIL 108; parameter of formal procedure called by
: value,

. - T .

...—ll- r_l}_

‘anTeAa 9¥elL A uesToog 1UBJISUOD UeITO0g
*AIBSSS508U JT UOTSIIAUCD m A Hmmmv u W “
adAq oTTdwWoD purB SNTBA 9¥E] (A Ja5a3ul) Jue3suUod Teady/Is8593UL IBTEeOS
(A W TueaTood . uearoog
(A u Tesy . Teay
dew A=2II2 JO SSaJppe 93B] (A Aexzae Jo82a3uT Aexae J9Fa3uUl Aexxe
(Sant) sseappe T2qel X9pul A T2qe] jdraosqns YO TMS
SsoJappe TaqeT 2xel A T=qe] T2qe7]
ssaJappe ToqeT 3XelL N To2qe] T=249q%1 T=qeT
SuTa3s Tenidoe JO SsSaIppe a¥el N Sutaag Sutaasg SuTtags
SSaJIpPpPEe BaJI® JUBLSUOCD I3¥E] N Yo g3 TIMS Yo TMS YO 3 TMS
N w uesToog « Uuealoog
3o0Tq N " Te29 " Te=Yy
sanpsaocoxd Jo Ssaappe 9¥el (N w JI98813urt s JI98973ut
A N aanpsaosoad
queTlq sanposooxd NueTg oaJInpaooad
N w ueagoog w ueaToog
dew Aexxe JO SSoJIPPE 9¥E] N i Teay il Teay
(N Aeaae xa8ajur Aeaxe asFojzug Keixe
SS9JIpPP® 3UB3SU0D a¥el ﬁ N bl 4 i e
IO ssaappe aveJl A N ; Teayd " i Teoy
A N Ia893uT JUe3SUCD /ISTITIUIPT I2F03UT JIeTeos
uoTarexsd() Isjsweged Tenioy anTepN J0 I3 9wWeIe] JI9j39ueIed Teniov S |
sweN TRWIOg

T @19VL

A ueaToog TTeo 2anpaooad usatoog
*AIessoosu IT A Tea) i u u n
uoTsaaauod aodAhy aTTdwo) A Js3a3uT) ITEe2 @anpsooad Tesyy/Ia893ul
*anTeA X9pPUL A ueaTOoOg adtaosqns ALAexxe ueaToodg
*AIeSS909U JT UOTISISAUOD A Teayg W i i i
sd43 sTTdwoD PuUr INTBA X8pUT A Ja8aqur 3dTIosqns Aeaxe Teay/Issajur
canTeA 29¥elL A usaToodg JI9FITIUSPT ueagoog
*AIR”SS905U JT UOTSISAUOCD ﬁ A ﬁmomv ” " "
2d&3 aTTdwod pur anTeA 3L A A hm%opﬁHv hwﬂhﬂwﬂmﬁﬂ.ﬁﬁmm\hmmopﬂH
A uesToog m
cLxessaoau A Teay "
JT uortsxsauod adLy sTrdwmo)d (A J88s3UT) uoTtssaadxe IeTeos
uoTleasd(Ja9jrswered Ten3O¥ anTep J0 I93sweIed Jojouweaed Tenioy 4 a
sweN Tewxo

penuT3uoo T WIAVL

_.h 5--

Actual Parameters which are Formal Parameter Scalars

Lxample
real procedure P (t) ;
bepin real R;
R = 1
end

Q

*

value t;

integer t;

procedure Q (a,b,c); value aj integer a,b; real c;

begin real Y;

Y := P (a) + P (b) + P (c);

end
H
L]

(JIM, FRED, BILL) ;

The call of procedure Q with actual parameters JIN,

FRED and BILL will give wvalue,

address

, address on the

stack since the formal paramecters are value a, name HiyiGa
However, the procedure P cxpects an integer value on the
stack, since its formal parameters t is called by wvalue.
So the final two parameters
Value which puts the result

are called by Take IFormal
in the stack.

In the following table of actual parameter operations,
procedure Q would be SOQURCIE and procedure P would be
DLESTINATION.

TABLE 2
SOURCE DESTINATION Actual Parameter operation
value | I/R| value | I Take Formal Value. R to I if
necessary
value | I/R| value | R L i " I toR "
value name Take Stack Address (R/IFUN) same
type
name I/R value L Talke Result Call by Name
: R to I if mnecessary
name 1/R value R Take Result Call by Name
I to R if necessary
name name Take Formal Address same type

. . Il

SIWARCH

This subroutine searches the Name List for the current
identifier,

(1)
(2)

(3)

()

w

w

W

In the
passed, the
BN+2 (Found

and is called with one of four parameters:

= 0 search the entire name list and find

the identifier ;

= 1 ; search the part of the name list
local to this block and do not find
the identifier;

= 2 3 search the part of the name list local
to this block and find the identifier ;
and

= 3 3 as search (1) except the identifier is
then inserted.

case of w = 0, each time a block stopper is
block number stored with it is copied into
Block Number).

When the identifier is found (and that is what is
desired), it is marked as used (for later checking in
NCLAPS COLLAPSE NAME LIST) and, where necessary, resets TYPBOX.,
Certain checks then follow, such as, is the identifier
preceding a [an array or switchj; is the identifier preceding
a (a procedure with parameters or a formal procedure’ zero.

BRRORS

FAIL
FAIL
FAIL

FAIL
FAIL

FAIL
FAIL

48
17
87

18
61

99
38

identifier declared locally.

-e

identifier not declared locally.

e

identifier not switch or label when
so Trequired.

Use of undeclared identifier.

-e

(misplaced, or missing procedure
name .

Tnconsistent use of identifier.

-e

[preceded by other than switch or
array.

47—

SECODL

This routine searches the constant area for a given
constant, The global variable Q is used to search CODL;
where the constant is not found it is entered, thereby
updating the pointer CODLP,

. —ig-

TAKE TIDENTIFIER

This subroutine is used to find the namelist entry
for the current identificr and to compile the correct
object program Take Address or Take Valuc operation.

The subroutine SIEARCH fails if the identifier is
not found in the Namelist and leaves I pointing to the
entry if found. An cxtra check is made that an identifier
occurring in an array declaration is non local, The
type of the ddentifier is then inspected to determine which
cbject program operation should be compiled.

(4)

(id)

(didi)

(iv)

(v)

switch e.g. go to S [n]

No operation is required until the switch
subscript has been processed.,

label e.g. go to LABEL

[

GTF or GT is stacked depending on whether

the label is a formal parameter or not,
together with the label address from the
namelist. This will be compiled in UNSTAK at
the end of the statement.

array e.g. a + arrvayname [b]

Take Address or Take IFormal Address is
compiled with the address of the array map.

type procedure
L= 2 FUN =
= a + FUN

In the former case, this is an assignment to

a function designator shown by P = 0. If FD

= 3 this assignment is outside the procedure
body; otherwise IFD is set to 1 to show the
assignment has been made. IFUN or RFUN is
compiled depending on whether this is an integer
procedure or real procedure with no parameters,

In the latter case, this is a function call
shown by P = 1, An operation to reserve
space for the function designator is compiled,
followed by CFF or CI', depending on whether
this procedure is a formal parameter or not,
together with the object program address of
the procedure block.

scalar e.g. REAL := int + RIAL

The relevant Take Address or Take Value
operation is compiled depending on whether

P = 0 or 1 and a further distinction is made
when the variable is a formal parameter, which
may be called by name or value (see TABLE 1).

~-ho-

TABLE 1

P £f[T] v[I] type Object Program Operation
0] 0 - Integer Take Integer Address TiA
0 0 - Real Take Real Address TRA
1 0 - Integer Take Integer Value TIR
1 0 - Real Take Real Value TRR
0 1 0 Integer " . N %
o 1 0 Resl ; Take TFFormal Address TIMA
0 1 Integer Take Stack Integer Address IIFUN
1 Real Talkke Stack Real Address RI'UN
X1 1 0 Integenr Take Formal Value Indirect TRCN
1 I 0 Real (Take Result Call by Name) |
1 1 i ¢ Integer : o 6
1 1 1 Real g Take Formal Value TV
LRRORS
FAIL 41 ; indentifier in bound pair is local
FATL 22 incorrect use of label, £o jg obscured
. or missing.
FATIL 111 ; type procedure zero declared with
parameters.
FAIL 46 ; assignment to function designator is
outside procedure body, or assignment
to formal procedure
FATL 31 ;3 assignment to switch
FAIL 25

¥ TFA and TFV are the same interpreter primitive,

w50 =

non type procedure as function designator

TAKE

This subroutine is used to process an identifier or
constant that is used in a statement or expression.
However, if the current ALGOL section does not contain
an identifier or constant, the last delimiter is checked,
and if it is] UNSTAK is called to generate INDA or INDR
as required,

If the current ALGOL scction contains an identifier,
it is processed by the subroutine TAKE IDENTIFIER (which
uses the P which is a parameter to TAKE),

It should be noted that P = 1 when on the right hand
side of an assignment statement, otherwise it is O,

Where the current ALGOL section contains a constant,
P is checked to remove errors such as "2:=", and after
a check that a Boolean constant is not used in an
arithmetic expression CODL is searched, having the
pointer Q set. CONS is set by BCR; to zero if real, to
one if integer, and to two if Boolean, The test on
CONS determines what instruction to generate before exit,

ERRORS
FAIL 31; constant before := or [

FAIL 45; Boolean constant cannot be used here,

FATL 30; adjacent delimiters inadmissible.

TYPCIIK

This subroutine, called during a for clause, checks
the type of the controlled variable (held in LOKTYP)
against the type of the current identifier (held in
TYPBOX) . It generates a conversion if necessary, and
resets TYPBOX to the type of the controlled variable.

—52—

ACTOP

This subroutine is used in conjunction with PRAMCIH
to check the legality of an actual parameter and to compile
the appropriate object program instruction.

A count of actual parameters in the current procedure
call is kept in PRMCOU which is checked, in the routine
')!' against the number of parameters in the namelist entry
for the procedure nane.,

If £ is set to expression level, this actual parameter
could be an expression or a procedure call,

Iixample
(1) PROCALL (a + Q (8) + Dy seeense

(ii) PROCALL (a, Q (S), 0 0 00 00800000

The difference between these cascs is slbwn by the top
of the stack; in the latter case the top of the stack is
(' since each actual parameter unstacks back to the i
of its procedure call; in the case of an expression, the
top of the stack will be an arithmetic, relational or
logical operator, If this actual parameter is an expression,
TAKIE and UNSTAK are used to complete the processing of the
preceding expression, ¥ is reset to 1, and PRAMCII is called
to check that the corresponding formal parameter is a
scalar called by value, and to compile a type conversion if
necessary.

If this actual parameter is a procedure call, PRAMCHU
is used to check that the corresponding formal paraneter
is a scalar called by wvalue.

If £ is set to statement level, the last delimiter
(LASTDL) is examined to determine between the three possible
types for this actual parameter,

Bxample
(1) PROCALL (a, B[1], seeceseeess LASTDEL =]

(1i) PROCALL (a,{string}, «........LASTDEL
(iii) PROCALL (a,b,C +eeeessessssss LASTDEL P

or (

1l
AL

In the first case, the top of the stack is used to
determine whether this is an array or switch subscript.
If the former, PRAMCH is used to check that the formal
parameter is a scalar called by valuc, and to compile a
type conversion if necessary. If the latter, the top of
the stack is GTS or GIFS and PRAMCH is used to check that
the formal parameter is a label called by wvalue,

In the second case, PRAMCH is used to check that
the corresponding formal parameter is a string called by
name.,

ACTOP (Contd)

In the third case, M is tested to determine whether
the actual parameter is an identifier or a constant. I
M = 1, this is an identifier and the Namelist is searched
to find the declared entry. PRAMCH then checks the type
of the actual parameter with that of the formal parameter
and compiles the relevant object program operations.

If M = 2,this actual parameter is a constant. and
SIICODL is used to find or enter the constant in the constant
list, and PRAMCH is used to compile the corrert "Take constant"
operation.

Calls of PRAMCIH:

Identifier

Constant

Expression

String

Switch call

Array subscript or procedure call.

wmEFwNeEO

ERRORS
FAIL 6 ; More than 14 parameters
FAIL 5 ; Illegal actual parameter

FAIL 49 ; Blank parameter

5l

ARRAY BD

This subroutine, called by the delimiters , and : ,
checks the validity of their use, TAKE and UNSTAK
are called to complete the processing of the preceding subscript
bound expression, at which time the top of the stack should be
the opening square bracket introducing the subscripts.

If this is in an array declaration, XX is used to
check that (e.g.)

real array X [a:b: s o0 0 e

is caught as illegal, and the count
of subscripts is incremented in DIM and restacked.

When this is during the use of the array, any necessary

conversion is generated before restacking the incremented
count of subscripts,

ERRORS
FAIL 66; misused , or : in an expression.
FALL 50; colon in subscript expression.

FAIL 103 ; commas or colons wrong in array
bounds.

This subroutine is used by any delimiter that starts
a declaration (e.g. integer); it checks the wvalidity of
its use and sels up a block if this is the first declara-
tion after a begin.

If begin ALL is on the top of the sﬁack, no action
need be taken.

If begin is top, a stopper entry is made in the
Name List and the block number updated (begin TR would
have already done this). The begin entry is unstacked,
and P tested to see if this routine has been called from
array. If so, a block entry is compiled into the object
prograimni, DiCSTA is set to 8 O before exit.

ERRORS
FAIL 36 ; declaration starts incorrectly
FAIL 54 ; declaration follows statement.

FAIL 63 ; misplaced declarator.

~56-

DECL

This subroutine is usedto enter all declarative
information into the Name List,

After checking that the identifier has not already
been declared during this block, name and type are entered.
The parameter is then examined for the type, as follows:

0 Scalar, Space is reserved in the notional data
area.,
1 Switch, Space is reserved in CODL (Constant

Object Data Load).

2 Procedure., The current program address is
inserted.

3 Array, ARRCOU is incremented.

b4 Label, Space is reserved in CODL, having
inserted the current block number.

ERROR

FAIL 27; declaration without identifier.

= KT

ENDSTA

This subroutine is used to complete the processing
of a statement, If an input/output statement is
terminating the marker is cleared and T set to 1.
DECSTA is set to statement level and BXP is used 1o
change the state variable I to expression level if
necessary. If B dis zero, TAKL is called to generate
the correct instruction, and ARITH,E, and EXPIYP arec
set up to deal with the next statement,

Otherwise, if the current section contains an
identifier (which must be a procedure identifier), the
Name List is scarched to discover whether this didentifier
is a formal parameter before generating the relevant

instruction,. EXPTYP is clcarcd bhefore exit.
LRRORS
FPATL, 32 ;3 constant or identifier other than

procedure zero used as statement,

FATIL 20 Array element or switch used as

statement.

~58.-

FORCOM

This subroutine is called at the end of a for list
element to compile the correct objeccl program operation.
TAKE and UNSTAK are used to complete the processing of
the preceding expression and the top of the stack (TS)
is then used to determine between the various kinds of
list element.,

EXA}[PLE (i) ___QL C V: = a, ¢ 0 0 00 0 000 Sinlple
(id) for C V: = 1 step 1 until n, ... until
(iii) for € V: = a while a <10, .,.... while

|

N.B, 4if FORCOM is called by ',' this could be the delimiter
between dimensions in an array subscript used in a list
element,

(ie)—For B Ve e B 01 9] .\, [

In cases (i), (ii) and (4iii) the type of the controlled
variable is restored from the stack into LOKTYP, and TYPCHK
is used to compile a type conversion if necessary. The
relevant object program operation is then compiled and a
check is made that the top of the stack is for, and an
exit is made back to ',' or do.

In case (iv), the number of dimensions is updated and
stacked with '[' and a return made to the CENTRAL LOOP, to
read the next ALGOL section.,

ERRORS
FAIL 96; incorrectly constructed for clause,
FAIL 43 missing] on array element preceding do.

=50

COLLAPSE FORMAL PARAMETERS (FCLAPS)

This subroutine is called from the delimiter j; ,
such as in the following example:

integer procedure P (a,b,c); integer a,b,c ;

P :=a 4+ b j;
At this stage the name list will look like this

block stopper

P = value of NLP (which was
stacked with proc begin)

The block stopper is erased, and for type procecdures a
check made that an assignment has been made to the
procedure identifier during the procedure body,

The V bit in the procedure name list entry is cleared,
as we are now no longer in the procedure body and recursion
cannot occur. WM is set and a warning message is given
for every paramcter not used, as these parameters are
inspected and condensed to one-word entries containing
type and whether by wvalue or not.

ERRORS

FAIL 16 ; No assignment to type procedure identifier.

‘ -60-

GOLLAPSE NAME LIST (NCLAPS)

This subroutine, called from end, rescets the Name
List Pointer to the position it held before the current
block began, and reinstates the previous bloclk number.
If any identifier is declarecd and not used, a warning
message is produced, except in the cases of switch names
which are ignored, and label names where the warning
message is upgraded to a fail. The variable CNL is set
on entry so that if more than one label is unallocated
each will give a failure message.

ERROR

FAIL 79 ;3 unallocated label.

=iy L .

real, integer, Boolean

W is set up with the corresponding type, and a
check is made that DECTYP is zero. If not, this
would mean that we were already in a declaration (as
DECTYP is set to zero on ;) such as

begin real integer asseees

DECTYP is then set up with the type from W, and
DEC is called with a parameter of 1. This in effect
looks back over its shoulder to see whether this is
the first declaration in a block (if it is DEC will
have to update Current Block Number, DIECSTA. etc).

IXRRORS

FAIL 47; illegal declaration
FAIL 76; misplaced delimiter

array

The subroutine DEC is used as described above, and
a check is made on DECTYP. The failure path is exactly
1ike the one above, where we are already in a declaration
other than real, integer or Boolean (e.g. Nbegin string

arrax....").

If DECTYP is set to real, integer, or Boolean, it
is further limited to array; if DECTYP is O, ALGOL specifies
that a non-type array is treated as a real array, and DECTYP
is thus set. MAMPS (Make Array Maps) is then stacked.

(4) so that inspection of the top of the stack
can show us that we are in an array
declaration(this is particularly important
when the array bound variables are them-
selves nasty things like procedure calls),
and

(ii) so that the relevant object program can be
generated at the end of the array bound
list (see] flowchart)

ARRCOU becomes zero ready to count array names (see
, (comma) which calls DECL (3))

.. bef.’;in real array A,B’C,D’ [-o'nooo

ERRORS

FAIL 72 ; illegal declaration

-62~

begin

This routine checks that begin has been used to
start a block or statement and sets DECSTA to zero.
Note that no block entry is compiled or set up in the
Namelist since it is not yet known if this begin starts
a compound statement or a block. This work is done in
DEC by the first declaration following a begin.

ERRORS

FAIL 60, illegal use of begin i.e. in expression or
following :=

~63-

do

The subroutine FORCOM completes the object program
instructions for the preceding for list element,. The
object program 'For Statement End' is then compiled and
an instruction to update the address following 'For' in
the object program to point to the controlled loop. A
staclk entry is made of for begin to show that this is a
for statement, with the second address following 'For'
which will be updated to point-to the statement following
the for statement, The block name is also updated to
its highest wvalue,

The 'for clause' is defined in ALGOL as being
followed by a Statement (a construct wide enough to include
a Block, or another for statement), I is therefore set
to 1 (to show that a statement is expected); ARITH and
F (the for clause marker) are cleared - the latter was
only of use during the processing of the for clause.

-6

else

The object program for the preceding statement or
expression is completed by TAKE and UNSTAXK, 1f the top
of the stack is 'then S' the subroutine ENDSTA is used to
compile the procedure zero call,

e.g. if a < b then procedure else go to label;

—

The top of the stack is then tested for 'then S' or 'then KE!
to differentiate between a conditional statement and a
conditional expression, In each case a UJ operation is
compiled which will be updated at the end of the statement,
and the IFJ operation around the then part is updated.

Finally 'else E' or 'else S' is stacked, (in the case
of an expression TYPBOX is stacked to show the type of the
then expression), as is the address of the incomplete UJ
operation around the else part,

In the case of conditional statements E, ARITH and
EXPTYP are reset for the following statement.

end

DECTYP i1s checked to make sure that this delimiter
does not complete a declaration (e.g. begin real a end),
and the subroutines ENDSTA and UNSTAK are used to couplete
the processing of the preceding statement. The top of
the stack is then inspected; if end shows that we are
ending a for statement (18 = for begin) we must cycle
round (having compiled something into the object program
using I'SEND) and inspect it again, because ALGOL's definition
of a for statement is recursive (see diagram) and therefore
one end may terminate lots of for statements.

A\

(Block Head ;(ggmpound Tai{)

1

Note: (Statement:)~—-\\—EN£i>

Vertical arrows link ¢
the relevant ' (_For Statemenf)

definitions

Horizontal arrows connect —N S s
the symbols and (;or clause)" Statemega
variables which " B

together form a defini-
tion.,

Having unstacked any lurking for begins, the top
of the stack should now be a form of begin., If it is
not it is a failure. e.g. for end.

Where the top of the stack is begin, this is the end
of a compound statement. begin TR signifies that this
is the end of a block containing no array (i.e. no block
entry compiled), and begin ALL that this is the end of a
block containing an array (and therefore there is an
unconditional jump to be updated). For the relevant
entries that are unstacked here, see DEC.

In the case of a block, the name list is collapsed
back to the first entry for this block, as all the
variables declared local to this block are now no longer
valid.

A test is then made for the end of the program (is
stack empty) and if so ENDPRO is accessed. Otherwise
BCR is called to extract any comment following end

e.g. end of this routine;

A warning message is emitted if there is a delimiter in
this section, which will catch

end
x 3= 13
Final exit is to OUT 2, as BCR will already have recognised

BB

one of the delimiters which terminate an end comment,
namely e¢nd, else or ;.

SRRORS

FFATL 40 3 Top of stack not a begin

~67 -

for

After checking that for is used at the start of
a statement (using M, I and EXP) DIZCSTA is set to /0 0
since this is a statement. A stack entry is made of
for together with its address in the object program.
This address will be used by do to update the pointer
to controlled statement. The current block name is
stacked before being updated to the next highest block
name for the for block.

The object program compiled contains two markers
which will be updated by the addresses to the controlled
statement and the statement following this for statement.

The subroutine BCR is used to read the next ALGOL
section which should be 'controlled variable := !

e.g. for cv 1= 1 step 1 until n do 5

TAKE compiles the correct object instruction for
the controlled variable and a stack entry is made for the
first list element witlhh the type, held in TYPBOX, of the
controlled variable. If the controlled wvariable is type
real, the list elements must all be real and similarly when
the controlled variable is type integer. The stack entry
'simple' is used to distinguish a simple list element
from a 'step' or 'while!' element.

Finally, ARITI and E are set for the following list
element expression and F is set to 1 to show that this is
a for clause.

ERRORS

FAIL 21 ; controlled variable is not a simple
variable.,

FAIL 44 ; for doesn't start a statement

~68 -

go to

After checking that the delimiter is used to start
a statement, DECSTA is set to /o o to show this is a
statement, The delimiter is stacked as GT since it
is not yet known if this is a go to label or go to

switch statement.
e.gs go to labelname;
go to s [a+b] ;

¥ and LBXPTYP are set up for the following label
or switch expression.

IERRORS

FAIL 42 ; go to follows an identifier or constant.

~69-

The initial test removes as a faillure such phrases

e a8

ne o

c‘I!—‘-O‘U‘
L

EXP is then called to set E to zero if the preceding
delimiter was := as in

a:=_:l.‘£...

In the case of E being equal to 1, DECTYP is tested,
It is normally zero (i.e. we are not in a declaration)
and DECSTA is set to /o o. It may however be set to

array, as in:

real array A [1 : PROC (if ...

In this case of course DECSTA must not be changed.
A test is then made to see if this is an actual parameter,
and if it is E i1s set to zero.

If E was not equal to 1, a further tesi is made to
remove constructs such as
y + if
The stack entry saves the state variables ARITH, E
and EXPTYP . and stacks if to be checked by the following

then, ARITH and E are then set up for the Boolean
expression in the if clause,

ERRORS

FAIL 673 if misused
FAIL 100; if must not be used after log., arith. or
rel, opecrator,
FAIL. 68; if used in declaration other than array
' declaration.

5 P flo‘ i

Procedure

The subroutine DEC is used to set up a block if
this is the first declaration in the block, a stopper
is put in the name list, the marker PH is set to show
that a procedure heading is being processed, and a call
is made to BCR to read the next ALGOL section i.e.
'procedure name' (. A check is made that the preceding
delimiter was real integer, Boolean or non-type. Unless
the procedure is own code an unconditional jump is compiled
to jump round the procedure body and a stack entry is made
of proc. begin together with various state variables and
the address (PP) of the incomplete UJ operation to be
updated at the end of the procedure body,

DECSTA is set to statement level for the procedure
statement following the specifiication part, the number of
parameters (PRMCOU) is set to gero and the current block
name (BN) is updated for the procedure block.

If the procedure has no parameters (delimiter isj;)
DIECTYP dis set to procedure zero and the procedure name is
declared in the namelist using the subroutine DECL. The
procedure entry operation is compiled, DECTYP cleared and
a call is then made to BCR to check whether the procedure
body is ALGOL or own code.

If the procedure has parameters, DECTYP is set and
the procedure name is declared in the namelist. PRCINT
is used to hold the namelist address of the procedure name,
and PROC is set to 1. The loop that follows reads a
formal parameter, checks that it has not already been
declared, enters it in the namelist and updates the count
of parameters. When ')' has been read, the procedure entry
operation can be compiled and the namelist entry completed
with the number of formal parameters; PROC and DECTYP are
cleared. ’

The next call to BCR should fetch ; which terminates
the formal parameter part.

Example: f.p. Eart /value part‘

integer procedure F (a, b, c¢c) ; <value a,b;

spécification part

P N
real a,c; array b;

Another call is made to BCR to determine whether a
value part or the specification part follows, Fach
identifier in the wvalue part is checked for appearance
in the formal parameter list,v:=1 in the namelist entry.

When the terminating ';' is read the next ALGOL section
is read (specifier,) and the specification part is processed.

This consists of specifiers followed by identifier
list(s) e.g. real a,c; There is:-an inner loop to read
each identifier in the list following the specifier, check
that it is a formal parameter and complete the namelist

entry. If the formal parameter is a switch the number of
dimensions is set to 1 but if it is an array or procedure

71

Procedure (Continued)

the number of dimensions or parameters is not yet known
and is set to + 15, This number will be updated at

the first occurence of this identifier with its parameters,
and subsequent occurences must agree.

If the delimiter is ';' this could be the end of the
specification part or the end of this specifier list.
In the former case, a check is now made that each formal
parameter has been speciiied and if called by value that
the type is not switch, string or procedure. The program
then compiles the check words for the run time parameter
checking.

Finally, a check is made to determine whether the
program body is ALGOL oxr own code. If the latter DIECSTA
is reset to declaration level, the formal parameters are
collapsed and the next delimiter is read to discard the ;
903 ALGOL requires the parameters of formal procedures to
be called by name, this is checked in PRANCH however, when
a parameter is found to be of type procedure.

BRRORS
FALL 101 ; procedure name not followed by ; or (

formal parameter part not followed by

FATL 102 ;
i

FAIL 90 ; wrong delimiter in value or specifier
part

FAIL 109 ; constant not allowed in procedure heading

FAIL 65 ; illegal specifier

FAIL 17 ; didentifier in speccification part is not

' a formal parameter, or formal parameter
not fully specified

FAIL 94 ; string, switch or procedure called by
value

FAIL 6 ; more than 14 parameters

FATL 86 ; procedure inside another declaration

IFATIL, 85 3 Name list overflows

FAIL 92 ; Identifier not specified

FAIL 88 ; formal parameter not followed by) or ,

<D o

step, until, while

The first test is to ensure that these delimiters
are only used in a for clause, The arithmetic expression
preceding the current delimiter is then conpleted by the
subroutines TAKE and UNSTAX,when the top of the stack
should then be simple, The wvariable G is set up with the
quantity stacked with simple, and LOKTYP is also set up.
TYPCHK is called to generate any conversion necessary,
€efet—

real A, B ; integer c;
for A =B + ¢ step

and TYPBOX is then set to LOKTYP, The current delimiter
is then examined.

In the case of the delimiter step, simple is restacked
with a marker to indicate that the delimiter until is
required, and an instruction compiled (an example of a compiled
for statement is given below). In the case of the delimitver
while ARITH is set up for the algebraic expression following.

ERRORS

FAIL 78 ; corresponding for missing

FAIL 21 ; ":=" omitted from for clause
FAIL 80 ; step, until or while misused in

for list element.

Example

begin integer i,j,k ;
for i := 1 step 1 until j do k := O

end ;

generates: PRIM FOR
—>+ 8191
+ (block number)
>+ 8191
T1A 4
TIC 1
PRIM STEP
TIC 1
TIR j
PRIM UNTIL
PRIM FSE
I—-»upd;za.te
TIA k
TIC O
PRIM ST
PRIM I'R
———update

.

switch

A check is made that we are not already in a
declaration and then DECTYP is set to switch. The
subroutine DEC is used to set up a block if this is the
first declaration in the block. The next ALGOL section
is fetched, which should be 'switchname :=', and LABCOU
is cleared. DECL ds used to declare the switchname in the
namelist and make an entry in the label data area (cobDL) .,

The loop is used to process each label in the switch
list. (IFIP ALGOL allows only labels in the switch list).

e.g. switch S := TOM, DICK, HARRY;

Each label is declared in the namellst together
with the address of the label in CODL and BN is entered
in label entry in CODL. At the end of the switch list
wvhen ';' is read, the number of labels is entered in CODL
and DECTYP is cleared.

e.g. layout of CODL for the above switch declaration.

CODI, Namelist
n + 3 +ss no, of labels s n

n + 1 + O '
n + 2 BN «ss for TOM TOM n + 1
n+ 3 + o
n + 4 BN .o« for DICK DICK n + 3
n + 5 + o :
n + 6 BN ees for HARRY HARRY n+ 5

When the left-hand label is declared, its object
program address is placed in the LODL label entry, over-
writing the + o,

ERRORS
FAIL 26; no := following switch identifier in
switch declaration, or switch

misplaced.

FAIL 4; wrong identifier in switch list.,

. ' sl

This routine first tests that we are at expression
level (if not, it fails) and then completes the processing
of the algebraic expression following if by calling TAKE

and UNSTAK. If is then unstacked and ARITH, E and EXPTYP
are restored. The state variable E is then used to decide

whether then should be stacked as "then S" or "then LE", The
pord pointer (PP) is also stacked, ready to update the IFJ

when the delimiter else is met,
ERRORS
FAIL 97; +then in statement
FAIL 69; corresponding if has been omitted

or conditional expression without
an else,

i

There are three possible uses of the delimiter
t= as follows:

(i) in a switch declaration, e.g.
sWwitch S = seeeas

(ii) in a for clause, e.g.
fOI‘V::lStep ¢ o e 6 00

(114i)din an assignment statement.,

The first two are dealt with under switch and for
respectively, and this routine merely deals with assign-
ment statements, After checking that we are not assign-
ing to a constant or an expression and that we are not in
a declaration, for clause or procedure call, DECSTA and
SV set to /o o and TAKE deals with the variable (simple
or subscripted) which precedes the delimiter.

As we require all left hand elements in an assign-
ment to be the same type the top of the stack is then
inspected to see if it is a :=. If not LHTYPE is set
to TYPBOX and the delimiter is stacked, otherwise LITYPE
and TYPBOX are tested for equality and the multiple store
functien (STA) is stacked.

LERRORS

I'ATL 28 ; := preceded by constant or used inside
an expression.

-

FAIL 52 ; := must not appear in actual parameter

list, or in a type or array declaration. -

i= appears in a for statement and other
than in assignment to controlled variable.

FAIL 7

~-e

FATL 112; Different types on Left hand side of an
assignment.

-6

Most of the processing for a j; in a declaration
is dealt with in that declaration

e.g. switch or scalar do their own, and array
declaration is done in RSBRAK

STATRM is then called to complete the processing
of the read or print statement. ENDSTA is used to
complete the processing of the constituents of the
statement otherwise, and the top of the stack is then
tested,

If this is for begin, the one or more for statements
are completed. If it is proc begin, this is unstacked,
the variables stacked with it are restored, and COLLARSE
FORMAL PARAMETIERS is called to condense the formal para-
meter entries in the Name List to two parts —— type, and
whether the parameter is called by name or value.

If the top of the stack is any other form of begin,
the routine is finished,

IRRORS

FAIL 53 TS not a form of begin.

FAIL 93 ; Declaration ends incorrectly (STATRM)

FAIL 20 3 Array or Switch element as statement
(ENDSTA)

FAIL 32 Constant or other than a non-type

procedure zero as a statement (ENDSTA)

s,

Arvithmetic Operators (+ - x / div)

As the treatment of these operators differs only
slightly their stacking priority is recorded and then
they share the routine. Their validity is checked
using EXP which sets Ii to expression level, If the
operator is not preceded by an identifier or constant
and is not a closing bracket it is stacked with its type
and assocliated priority, except for special cases unary
plus which is ignored, and unary minus which is noted
for special action.

Otherwise the identifier or constant is dealt with
and TAKE and UNSTAK are called, or in the case of the
closing bracket just UNSTAI,

IERRORS

FAIL 30 ; Adjacent arithmetic operators,

FATL 57 3 Adjacent operators inadmissable,

Relational Cperators (<>é:'“_-: =)

After checking the wvalidity of the use of the
operator, TALKE and UNSTAK are used to process the
preceding identificer or constant, and to unstack any
operators with priorities greater than or equal to the
priority of the current delimiter.

The current operator is then stacled with its
stack priority and the type of the preceding wvariable
o1 expression, I is set to expression level.

IERRORS

I'ATIL 58 ;3 idllegal use of welational operator.

=79

Logical Operators (D V/_.,)

The stack priority of the present operator is stored

and a check is made on the usc of this delimiter.
setting I to expression level, further checks are
if the current operator is — Ixcept in that
TAKE and UNSTAX are used to process the preceding
fier and to unstack any operators with priorities
or equal to the priority of the current operator,
the delimiter is stacked with its priority.

ERRORS
FAILL 58 ;3 logical operator misplaced

FAIL 59 ;3 idllegal use of ——

=80~

After
made
case,
identi-
greater than
Finally

This routine deals with the use of this delimiter
for a subscripted variable, a switch designator or as
the start of a bound pair list in an array declaration.

Ixamples: (1) eeeee + TABLE [2,6]
(d4) £0 to SWITCHLIST [4]
(iid) array TABLE [l:p, -3: n]

If DECTYP is clear, this can be a subscripted
variable or a switch designator, and DECSTA is set to
statement level, TAKE is used to process the switch
or array identifier and lecaves I pointing to the namelist
entry. If the preceding identifier is type array, a
stack entry is made of [together with the current values
of the state variables. E, ARITH and EXPTYP are then
set for the following arithmetic expression.

If the preceding ddentifier is type switch, a test
is made that the preceding delimiter is go to unless
this is an actual parameter,

Example: £o to s [4] or FUNCTION (S[4],p)

GTFS or GTS is stacked depending on whether this
is a formal parameter reference or not, together with
address in the namelist entry. The current delimiter
is then stacked. '

If DECTYP is set, this delimiter is being used to
start a bound pair list or to start a subscript expression
inside a bound pair list.

Lxample: array TABLE [1 : LIST [3], 2 : n]

The former case is shown by the fact that the top
of the stack is MAMPS (array map) and DECL is used to
declare the array name in the namelist, '[' is stacked
with a dimension count of 1, a marker of O to signify
lower bounds and I to give the namelist address of the
arrayname.

In the latter case, E is set to expression level
and TAKE is used to process the preceding array name,
before [is stacked,

ERRORS

FAIL 33 Opening square bracket follows closing

bracket.

FATL 73 Opening square bracket not preceded by
identifier.

FAIL 24 Switch designator not a parameter orx

preceded by go to

=81~

The preceding expression is completed using TAEE
and UNSTAK, The top of the stack then indicates
whether this is an array or switch subscript expression,
or an array bound pair list.

In the former casc the top of the stack is [and
the TYPBOX is tested to determine whether the subscript

expression is type integer or rcal. If real, a
conversion to integer must be compiled. The wvalues of
the state wvariables as at [are then restored from the
stack, The number of dimensions counted on the stack
with [is checked with the array declaration in the
namelist. If this is -1 in the namelist (formal

parameter specifier) the number of dimensions is now
entered.

array b ;

-

Example: procedure P (b)
b= B[1580]

When the array b is used, it is found that the
number of dimensions is 3 and can therefore be placed
in the namelist entry for b.

If this is a switch subscript, there must be only
one dimension. Finally, if this is an array subscript,
INDR is compiled in the case of an expression and IND is
~ stacked in the case of a statement since it is not yet

known if INDA or INDR is required.

EK&}HE].G: A [2] 1 =B [l' n] P S ses e

In the latter case, when this is an array declara-
tion, the number of dimensions is placed in DIM, a
lower/upper bound marker in xx and I is restored to the
array namelist entry. A check is made that the bound
pair ended wilh an upper bound (xx = l), and F and ARITH
are set for the following declaration or statement.

The top of the stack should then be MAMPS and this is
compiled with the number of dimensions and arrays

(ARRCOU) . The nawelist entries for each array arc then
updated with the number of dimensions and the address of
the array map in the object progran. Finally, the

shared map is compiled.

Lxample: array A,B,C [pjq, s:t]

ARRCOU will be 3 and number of dimensions will be 2.

ERRORRS _

FAIL 74 3 unmatched closing square bracket.

FATIL 51 ; wrong number of dimensions in array
subscript

FAIL 95 ; more than one dimension in switch
subscript :

FAIL 75 3 upper bound missing from bound pair

FAIL 23 3 dincorrect array declaration.

-82-

DECTYP is used to decide whether the current
identificer follows a label or a lower bound in an array
declaration,

In the latter case, ARRBND processes the current
ALGOL section,

In the former case, EXP is used to check the
validity of the use of the label, and DECSTA is set to
statement level (as one cannot label a declaration without
an Intervening begin). The Name List is then searched
for the label (which must have been declared in a prior
switch list declaration), and the label entry in Label
Object Data Load (CODL) should have an address part of
Zero, If not, this label has been met on the left-hand
side of a colon twice and this is an error,

The next test is to see whether this label has been
declared in the current block, If it hasn't, it is an
error except in the case of procedure definitions or for
clauses (see example below). In these cases, the
existing entry in CODL is cleared and a new entry made,.

ERRORS

FATL 29; ¢ in type or switch declaration.
FAIL 9; label used twice on lefit-hand side.
FAIL 48; imisused identifier.

Example: begin real c¢; switch S:= LABEL;

procedure P (q,r,s); integer q,r,s;
LABEL: begin gq § = r + s}

go to LABEL

end i

If the first begin sets the block number to (say)
52, LABEL is entered by its declaration in Block 52,
But procedure P resets the block number to 53, and when
LABEL is met on the left-hand side, the block numbers do
not correspond.

-83-

This routine deals with various uses of the
delimiter , .

i) INOUT (1) is called to deal with a read or
print list comma.

§4.) If we are in a procedure call (PROC = 1)
the subroutine ACTOP is used to process
the current ALGOL section.,

iii) If the for clause marker is set, the
subroutine FORCOM is used to distinguish
between the use of comma between for list
elements in which case PRIM DO is compiled
after a typecheck, or between subscript
expressions of a variable used in a for
list element, The latter case does not
return from FORCOM,

The former case then stacks the simple for
element again, sets the state variable ARITH
to 1 and exits,

iv) If DECTYP = O the current delimiter is
being used between subscript expressions,
and is processed by the subroutine ARRBND,

v) Finally, the top of the stack is used to
differentiate between various uses of a
comma in an array declaration,

If the top of the stack is MAMPS, the comma
is between array identifiers viz:

real array A,B, ...,

and the identifier is entered in the Name
List using DECL.

Otherwise the comma is being used between
subscript expressions, and ARRBND processes
the current ALGOL section.,

ERRORS

FAIL 96; incorrect for clause (FORCOM)

FAIL 77; dincorrect use of comma, or missing identifier
in array declaration,

-8h4_

-

After the inditial checks to catch subscripted
constants and (immediately following a closing bracket
DisCTYP is tested to see whether we are in array declara-
tion or in a statement,. The state variable M will tell
us whether this delimiter is being used as an expression
bracket or in a procedure call.

In the case of an array declaration, a failure is
indicated if E is set to statement level, unless PIOC
shows that an actual parameter is being processed, e.g.

real array A [1: PROC (a, PROC2(....
or real array A [1: PROC (a,(b + c

The former example will cause M to be set at 1, and
the latter zero, which is the subject of the next test.
Where this is a procedure call, the flowchart joins with
the path where DLCTYP was zero and this was a procedure
call (which has already called EXP to change E to
expression level if necessary, and set EXPRES in the
case of a read or print statement e.g. read reader (1)...)

The case of "go to S (..." is failed by the next
test on LEXPTYP; and the procedure name is then searched
for in the Name List. If we are in an array declaration,
we check that the array bounds are not local (illegal
ALGOL), before discovering whether this is a type

procedure, I so, space is reserved on the run-time
stack (by compiling PRIM UP) for the result of the type
procedure, Various wvariables are then stacked with the

delimiter, and these wvariables are then set up to deal
with the actual parameitcrs of this procedure call.

In the case of expression brackets used in
statements, the delimiter is stacked, and PROC set to
zero while processing the constituents of the bracket.

BRRORS
FAIL 61 ; misplaced
FAIL 82 must not appear in a type declaration
FAIL 62 ; function designator as subject of
"go to
FAIL 41 array bounds must not be local
FAIL 25 ; mnon type procedure as function

designator in expression

The state variable PROC indicates whether this
delimiter is an expression bracket or a procedure call
bracket.

If it is an expression bracket, we first check
that we are in fact within an expression. This kills
"a + (b)", The translation of the preceding
expression is completed using TAKE and UNSTAK, after
which the top of the stack should be the delimiter £«
This is unstacked and discarded, having reset PROC to
the stacked value.

If it is a procedure call bracket, ACTOP is called
to complete the translation of the preceding parameter,
PROCPO is saved in I after the top-of-stack test, and
the stacked state variables restored. A test is now
made to see whether the count of parameters in the call
is equal to that in the declaration; if not, it may be
that this procedure is itself a formal parameter. If so,
the specifier in question has not told us how many
parameters are required, and we must fill the count in
from this call, llowever, we must first check that this
count has not been filled in by some previous use, if so
it must fail as in the last line of the following example.

real procedure JIM (a,b); dinteger-a ; real
procedure b;

begin integer q,r,S}

b (eris)?
b (q.,7);

a @

a 3

1

The test on f [I] determines what sort of
instruction to compile for this procedure call, Finally,
if & is set to statement level a check is made that the
next delimiter is an "end-of-statement'" delimiter,
otherwise in the expression case TYPBOX must be set.

ERRORS

FAIL 81; misused) other than in expression,
FAIL 82; unmatched closing round bracket.
FAIL 5; 4illegal parameter list.

FAIL 51; dincorrect number of parameters.

FAIL 111; incorrect number of parameters in
use of formal procedure.

FAIL 84; wrong delimiter after procedure
statement,

86~

{,(string opecnins quotql

This routine checks that this string is being
used as an actual parameter, or in a print statement,
and then compiles an unconditional Jjump around the
string, which will be updated when the last character
in the string is read. There is a count of nested
string quotes, and the characters are packed for the
object program, When the final closing string quote
is read, the UJ operation is updated and '*»' is stored
as the last delimiter. If a parameter case the following
call to BCR should fetch ' ,' or ')', and ACTOP is then
called. If a print statement INOUT is compiled, and
the delimeter which may be end or else also decides the
following action,

Example PROCALL (a, {string}, {otherstring})

After compiling the actual operation for the string,
ACTOP is used to check that the corresponding formal
parameter is specified as siring called by name. E is
set to statement level and if the current delimiter.is
1)!' exit from this routine is to) Entry 2 to complete
the processing of the procedure call,

IERIRORS

FAIL 5 3 string is not the complete actual
parameter

FAIL 105 ;3 wrong delimiter following string.

~87-

